
Digital Object Identifier (DOI) 10.1007/s100520000333
Eur. Phys. J. C 14, 347–365 (2000) THE EUROPEAN

PHYSICAL JOURNAL C
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Abstract. Recent neutrino experiments suggest strong evidence of tiny neutrino masses and the lepton-
flavor mixing. Neutrino-oscillation solutions for the atmospheric neutrino anomaly and the solar neutrino
deficit can determine the texture of the neutrino mass matrix according to the neutrino mass hierarchies
as Type A: m3 � m2 ∼ m1, Type B: m3 � m2 ∼ m1, and Type C: m3 ∼ m2 ∼ m1, where mi is the i-th
generation neutrino mass. In this paper we study the stability of the lepton-flavor mixing matrix against
quantum corrections for all three types of mass hierarchy in the minimal supersymmetric Standard Model
with an effective dimension-five operator which gives the Majorana masses of neutrinos. The relative sign
assignments of neutrino masses in each type play crucial role for the stability against quantum corrections.
We find that the lepton-flavor mixing matrix of Type A is stable against quantum corrections, and that
of Type B with the same (opposite) signs of m1 and m2 are unstable (stable). For Type C, the lepton-
flavor-mixing matrix approaches the definite unitary matrix according to the relative sign assignments of
the neutrino mass eigenvalues as the effects of quantum corrections become large enough to neglect the
squared mass differences of neutrinos.

1 Introduction

Recent neutrino experiments suggest strong evidence of
tiny neutrino masses and flavor mixing in the lepton sector
[1]-[4]. Studies of the lepton-flavor-mixing matrix, which
we call the Maki-Nakagawa-Sakata (MNS) [5] matrix,
point to new steps of flavor physics. Especially, the study
of the energy-scale dependence of the MNS matrix is one
of the main issues to investigate new physics beyond the
Standard Model (SM) [6].

There following neutrino-oscillation solutions exist for
the solar neutrino deficit and the atmospheric neutrino
anomaly:

∆m2
solar ∼




0.85 × 10−10 eV2

(vacuum solution),
1.8 × 10−5 eV2

(MSW-large mixing solution),
0.8 × 10−5 eV2

(MSW-small mixing solution),

(1.1a)

∆m2
ATM ∼ 3.7 × 10−3 eV2 , (1.1b)
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where ∆m2
solar and ∆m2

ATM stand for the squared mass
differences of the solar neutrino deficit [1] and the atmo-
spheric neutrino anomaly [2,3], respectively. In this arti-
cle, we adopt the scenario of three-generation neutrinos,
which implies

∆m2
solar ≡ ∣∣m2

2 − m2
1

∣∣ , and

∆m2
ATM ≡ ∣∣m2

3 − m2
2

∣∣ , (1.2)

where mi is the i-th (i = 1 ∼ 3) generation neutrino
mass (mi ≥ 0). We take the following typical values of the
mixing angles in each solution:

sin2 2θsolar =




1
(vacuum solution),

1
(MSW-large mixing solution),

0.017
(MSW-small mixing solution),

(1.3a)

sin2 2θATM = 1 (atmospheric neutrino anomaly) (1.3b)
sin2 2θCHOOZ = 0 (CHOOZ experiment) . (1.3c)

Under the assignments of (1.2), there are the following
three possible types of neutrino mass hierarchy [7];

Type A : m1 ∼ m2 � m3 , (1.4a)
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Type B : m1 ∼ m2 � m3 , (1.4b)
Type C : m1 ∼ m2 ∼ m3 . (1.4c)

In this article we study the stability of the MNS matrix for
these three types of neutrino mass hierarchy against quan-
tum corrections in the minimal supersymmetric Standard
Model (MSSM) with the effective dimension-five operator
which gives the Majorana masses of neutrinos. Since the
negative sign assignments of mi in (1.4) also satisfy (1.2),
we consider all relative sign assignments for the masses
in each type. We determine the MNS matrix elements at
the low-energy scale from the neutrino-oscillation exper-
iments, and analyze whether the MNS matrix is stable
against quantum corrections in each type of neutrino-mass
hierarchy. The results of our analyses are found to depend
strongly on the types of neutrino-mass hierarchy and on
the relative sign assignments of masses. Our findings are
summarized as follows.

Type A: The MNS matrix is stable against quantum cor-
rections.
Type B: The MNS matrix is stable when m1 and m2 have
the opposite signs, while it is unstable when m1 and m2
have the same signs.
Type C: The MNS matrix approaches a definite unitary
matrix according to the relative sign assignments of the
neutrino masses, as the effects of quantum corrections be-
come large enough to neglect any squared masse differ-
ences of the neutrino.

Our results are consistent with those of the recent
works [8]-[10] which studied the related subject for cer-
tain specific cases. In the case of Type C for the relative
sign assignments (m1,−m2, m3), where each mi is non-
negative, the relation between the eigenvectors at the mZ
scale and that at the MR scale found in [8] for large tanβ
is consistent with ours. Also in the case of Type C with the
eigenvalues as (−m1, m2, m3), the result of [9] is consis-
tent with ours. When the present work has been essentially
completed, we received the work of [10], which studies the
case of Type B. Our results agree with theirs. We believe
that our comprehensive study will serve as a clue of the
flavor physics.

This article is organized as follows. In Sect. 2, we de-
termine the elements of the MNS matrix from the data
of recent neutrino-oscillation experiments. In Sect. 3, we
estimate the magnitude of quantum corrections of the
dimension-five Majorana operator. In Sect. 4, we study
the stability of the MNS matrix against renormalization
effects in the two-generation case. In Sect. 5, we analyze
the stability of the MNS matrix against quantum correc-
tions in the three-generation case for each type of mass
hierarchy. Section 6 gives our conclusions.

2 The Maki-Nakagawa-Sakata matrix

In this section, we give a definition and parameterization
[11] of the Maki-Nakagawa-Sakata (MNS) lepton-flavor
mixing matrix [5]. We determine elements of the MNS

matrix from the data of recent neutrino-oscillation exper-
iments [1]-[4].

2.1 Definition

The effective Yukawa Lagrangian in the lepton sector is
given by

Llow
yukawa = ye

ijφdLi · ec
Rj − 1

2
κij(φuLi) · (φuLj) + h.c. ,

(2.1)
where ye is the Yukawa matrix of the charged lepton. φu
and φd are the SU(2)L doublet Higgs bosons that give
Dirac masses to the up-type and down-type fermions, re-
spectively. Li is the i-th generation SU(2)L doublet lep-
ton. eRi is the i-th generation charged lepton. The matrix
κ induces the neutrino Majorana mass matrix, which is
complex and symmetric.

We now give a definition of the 3 × 3 MNS matrix,
which is defined analogously to the CKM matrix [12,13].
Unitary matrices of Ue and Uν transform the mass-
eigenstates into the weak-current eigenstates as
 lL1

lL2

lL2


 = Ue


 eL

µL

τL


 ,


 νL1

νL2

νL3


 = Uν


 ν1

ν2

ν3


 .

(2.2)
The MNS matrix is then defined as

(VMNS)αi ≡ (U†
e Uν

)
αi

, να =
3∑

i=1

(VMNS)αi νi , (2.3)

where α and i label the neutrino flavors (α = e, µ, τ) and
the mass eigenstates (i = 1, 2, 3), respectively.

2.2 Parameterization

The 3 × 3 MNS matrix generally has three mixing angles
and three physical phases for the Majorana neutrinos. We
adopt the parameterization [11]

VMNS =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




︸ ︷︷ ︸
Uαi


1 0 0

0 eiϕ2 0
0 0 eiϕ3


 . (2.4)

The matrix Uαi, which has three mixing angles and one
phase, can be parameterized in the same way as the CKM
matrix. Since the data of the present neutrino-oscillation
experiments directly constrain elements of Ue2, Ue3, and
Uµ3, the most convenient parameterization is to adopt
these three elements as independent parameters [11], anal-
ogously to the parameterizations [14,15] at the CKM ma-
trix. Without losing generality, we can take Ue2 and Uµ3 to
be real and non-negative by redefining ϕ2 and ϕ3. Then,
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only Ue3 has a complex phase. All the other matrix ele-
ments can be determined by the unitarity conditions, as
follows:

Ue1 =
√

1 − |Ue3|2 − |Ue2|2 ,

Uτ3 =
√

1 − |Ue3|2 − |Uµ3|2 ,

Uµ1 = −Ue2Uτ3 + Uµ3Ue1U
∗
e3

1 − |Ue3|2 ,

Uµ2 =
Ue1Uτ3 − Uµ3Ue2U

∗
e3

1 − |Ue3|2 ,

Uτ1 =
Ue2Uµ3 − Uτ3Ue1U

∗
e3

1 − |Ue3|2 ,

Uτ2 = −Uµ3Ue1 + Ue2Uτ3U
∗
e3

1 − |Ue3|2 . (2.5)

Here Ue1 and Uτ3 are chosen real and non-negative, and
the other elements are complex.

The relations among the MNS matrix elements and
the mixing angles are given by

sin θ13 = |Ue3| , sin θ23 =
Uµ3√

1 − |Ue3|2
,

sin θ12 =
Ue2√

1 − |Ue3|2
, (2.6)

which can be rewritten as

sin2 2θ13 = 4|Ue3|2
(
1 − |Ue3|2

)
, (2.7a)

sin2 2θ23 = 4
U2

µ3

1 − |Ue3|2
(

1 − U2
µ3

1 − |Ue3|2
)

, (2.7b)

sin2 2θ12 = 4
U2

e2

1 − |Ue3|2
(

1 − U2
e2

1 − |Ue3|2
)

, (2.7c)

where θij is the mixing angle between the i-th and j-th
generations. In general, these mixing angles are not the
same as those obtained from two-generation analyses of
the experimental results.

2.3 The MNS matrix at the weak scale

Now let us fix constrain the independent parameters of the
MNS matrix, Ue2, Ue3 and Uµ3 from the data of neutrino-
oscillation experiments.

2.3.1 |Ue3|

The CHOOZ experiment [4] measures the survival proba-
bility of νe. The result of this experiment shows that

sin2 2θCHOOZ < 0.18 , for δm2
CHOOZ > 1 × 10−3eV2.

(2.8)

By using the above result, we can obtain the following
constraint:

|Ue3|2
(
1 − |Ue3|2

)
< 0.045 , (2.9a)

for |m2
3 − m2

1| ' |m2
3 − m2

2| > 1 × 10−3eV2 . (2.9b)

In this article we assume the (1,3) element of the MNS
matrix at the weak scale mZ to be

Ue3 = 0 , (2.10)

for brevity.

2.3.2 Uµ3

The atmospheric neutrino data [2,3] suggest the maximal
mixing of νµ → νX (νX 6= νµ, νe) oscillation1. In the three-
flavor analysis, the most favorable interpretation of the
data is the νµ → ντ oscillation. From (2.7b) and (2.10),
we can obtain

sin2 2θATM = 4U2
µ3
(
1 − U2

µ3
)

. (2.11)

Thus, by using (1.3b) we fix the (2,3) element of the MNS
matrix at the mZ scale as

Uµ3 =
1√
2

. (2.12)

2.3.3 Ue2

Deficits of solar neutrinos observed at several telestial ex-
periments [1] have been interpreted as νe → νX (νX 6=
νe , νe) oscillation, and the following three solutions are
found: the MSW small-mixing solution (MSW-S), the
MSW large-mixing solution (MSW-L) [16], and the
vacuum-oscillation solution (VO) [17]. By using (2.10), the
survival probability of νe is simplified as

Pνe→νe
= 1 − 4|Ue1|2|Ue2|2 sin2

(
δm2

12

4E
L

)
. (2.13)

Equation (2.10) also simplifies (2.7c) to be

sin2 2θSUN = 4U2
e2
(
1 − U2

e2
)

. (2.14)

Thus, from (1.3a), we determine the value of Ue2 at the
mZ scale as

MSW-S : Ue2 = 0.0042 , MSW-L : Ue2 =
1√
2

,

VO : Ue2 =
1√
2

, (2.15)

for each solution.
1 The oscillation of νµ → νe is not only disfavored by the

CHOOZ experiment data of (2.8), but also disfavored by the
Super-Kamiokande data by itself [2,3].
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2.3.4 The MNS matrix at the mZ scale

In this article we neglect the Majorana phases of ϕ2,3 in
the MNS matrix of (2.4) for simplicity. By using (2.5),
(2.10) and (2.12), the MNS matrix at the mZ scale is
determined to be

UMNS =




cos θ sin θ 0

− sin θ√
2

cos θ√
2

1√
2

sin θ√
2

− cos θ√
2

1√
2




, (2.16)

where the angle θ2 depends on the solution of the solar
neutrino deficits as

sin θ =




0.0042 (θ = 0.0042) (MSW-S) ,
1√
2

(θ =
π

4
) (MSW-L) ,

1√
2

(θ =
π

4
) (VO) ,

(2.17)

which are obtained from (2.15).

3 Quantum corrections of κ

The renormalization group equation (RGE) of κ, which is
the coefficient of dimension-five operator in the effective
Lagrangian of (2.1), has been studied in [18,19]. It is ex-
pected that κ is produced by the see-saw mechanism [20]
at the high energy-scale, MR. In the MSSM, κ satisfies
the following RGE at the one-loop level [19]:

8π2 d

dt
κ =

{
tr
(
3yuyu†

)
− 4π

(
3α2 +

3
5
α1

)}
κ

+
1
2

{(
yeye†

)
κ + κ

(
yeye†

)T
}

, (3.1)

where t = lnµ, and µ is the renormalization scale. yu is the
up-quark Yukawa matrix. We notice that once ye is taken
diagonal at a certain scale, then the diagonality of ye is
kept at all energies in the one-loop level. This is because
there are no lepton-flavor-mixing terms, except for κ, in
the MSSM Lagrangian. In this base κ is diagonalized by
the MNS matrix, and (3.1) is simplified to

8π2 d

dt
lnκij = tr

(
3yuyu†

)
− 4π

(
3α2 +

3
5
α1

)
+

1
2
(
y2

i + y2
j

)
, (3.2)

where yi (i = 1 ∼ 3) stands for the i-th generation
charged-lepton Yukawa coupling.

2 From now on, θ12 is denoted by θ unless we note otherwise
explicitly.

The RGE of κ has two important features [21]. One
is that none of the phases in κ depend on the energy-
scale. The other is that the RGE of κ can be governed
by only ng equations, where ng stands for the generation
number. In the three-generation case (ng = 3), κ can be
parameterized as

κ = κ33


 r1 c12

√
r1r2 c13

√
r1

c12
√

r1r2 r2 c23
√

r2

c13
√

r1 c23
√

r2 1


 ,

= κ33




√
r1 0 0
0 √

r2 0
0 0 1




 1 c12 c13

c12 1 c23

c13 c23 1




×




√
r1 0 0
0 √

r2 0
0 0 1


 . (3.3)

Here, cij ’s (i = 1, 2 and j = 2, 3) are defined as

c2
ij ≡ κ2

ij

κiiκjj

, (3.4)

which are energy-scale independent complex parameters.
ri’s in (3.3) are defined as

ri ≡ κii

κ33
, (i = 1, 2) , (3.5)

which are always taken to be real and non-negative by the
redefinitions of the charged-lepton fields. Since the MNS
matrix is independent of the overall factor, κ33, only two
real parameters, r1 and r2, determine the energy-scale de-
pendence of the MNS matrix.

From (3.2), the RGE of ri is given by

d

dt
ln ri =

d

dt
ln

κii

κ33
= − 1

8π2

(
y2

τ − y2
i

)
, (i = 1, 2) ,

(3.6)
where yτ = ye

33 is the Yukawa coupling of τ . Since the
right-hand side of (3.6) is always negative, the value of ri

decreases as the energy-scale increases. Equation (3.6) can
be solved as

ri(MR) = ri(mZ)
Ii

Iτ

, (3.7)

where Ii (i = 1(e), 2(µ), τ) is defined as

Ii ≡ exp

(
1

8π2

∫ ln MR

ln mZ

y2
i dt

)
. (3.8)

From (3.3) and (3.7), κ at the MR scale is determined as

κ(MR) =
κ33(MR)
κ33(mZ)



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1




×κ(mZ)



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1


 . (3.9)
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(a):4.6×10−2
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MR=106GeV

Fig. 1. tan β dependence of εe,µ. The solid-line (dashed-line)
shows MR = 1013GeV (106GeV). Each dotted-line shows
a:4.6 × 10−2, b:1.9 × 10−3, c:1.0 × 10−3 and d:2.3 × 10−4

For completeness, we discuss cases with κ33 = 0 in Ap-
pendix A. All the following results are obtained indepen-
dent of the presence of non-vanishing diagonal elements.

Now let us define the small parameters

εe,µ = 1 −
√

Ie,µ

Iτ
,

=
1

16π2

∫ ln MR

ln m
Z

(
y2

τ − y2
e,µ

)
. (3.10)

Figure 1 shows the tanβ(= 〈φu〉/〈φd〉) dependences of εe

and εµ for MR = 1013GeV and 106GeV. The magnitudes
of εe,µ increase as tan β increases, because the quantum
correction from τ becomes large in the large tan β region3.
Since the value of

√
Ii/Iτ can be mainly determined by

Iτ , the difference of εe and εµ is negligible. The solid-line
(dashed-line) in Fig. 1 stand for the tanβ dependences of
εe,µ with MR = 1013GeV (106GeV). Hereafter, we fix the
MR scale at 1013GeV in our numerical analyses.

4 Two generation case

In this section, we neglect the first-generation contribu-
tions for simplicity, and discuss the stability of the MNS
matrix against quantum corrections for two-generation
neutrinos.

Neglecting the first generation, (3.9) becomes

κ(MR) =
κ33(MR)
κ33(mZ)

(√
Iµ/Iτ 0
0 1

)

×κ(mZ)

(√
Iµ/Iτ 0
0 1

)
. (4.1)

3 We show the approximation of
√

Ii/Iτ in Appendix B.

We parameterize κ(mZ) as

κ(mZ) =

(
cos θ23 sin θ23

− sin θ23 cos θ23

)(
κ2 0
0 κ3

)

×
(

cos θ23 − sin θ23

sin θ23 cos θ23

)
, (4.2)

where κ2,3 are the eigenvalues of κ at the mZ scale. From
(4.1), the mixing angle at the MR scale (θ̂23) is given by

tan 2θ̂23 =
δk sin 2θ23 (1 − ε)

δκ cos 2θ23 + ε (2 − ε)
(
κ2 + δκ sin2 θ23

) , (4.3)

where
ε ≡ εµ , and δk ≡ κ3 − κ2 . (4.4)

Hereafter, we denote the mixing angles at the MR scale
as θ̂ij ’s. Figure 1 shows 0 < ε < 0.15 for 2 ≤ tanβ ≤ 60
with MR = 1013 GeV. We notice that |δk| is not necessar-
ily smaller than |κ2,3|, because κ2 can take the opposite
sign of κ3. We classify the neutrino mass hierarchies into
the following three cases as Type A(2): |κ3| � |κ2|, Type
B1(2): κ3 ' κ2 and Type B2(2): κ3 ' −κ2. We now con-
sider the stability of the mixing angle in each case.

1. Type A(2):
When |κ2| is much smaller than |κ3| (i.e., δk ∼ |κ3| �
|κ2| ' 0), (4.2) becomes

κ(mZ) ' κ3 cos 2θ23

(
tan2 θ23 tan θ23

tan θ23 1

)
. (4.5)

In this case, the mixing angle θ̂23 is given by

tan 2θ̂23 =
sin 2θ23(1 − ε)

cos 2θ23 + ε(2 − ε)sin 2θ23

= tan 2θ23 (1 − ε sec 2θ23) + O(ε2) (4.6)

from (4.3). This means that θ̂23 is stable against the
quantum correction of ε.

2. Type B1(2):
In the case of κ2 ' κ3 (i.e., κ2κ3 > 0, 0 < |δk| �
|κ2,3|), κ(mZ) is given by

κ(mZ) =

(
κ3 − δkcos 2θ23 δksin θ23cos θ23

δksin θ23cos θ23 κ3 − δksin 2θ23

)

' (
κ3 − δksin 2θ23

)

×




1 − δk

κ3
cos 2θ23

δk

2κ3
sin 2θ23

δk

2κ3
sin 2θ23 1


. (4.7)

Let us discuss the stability of (4.7) against the renor-
malization effects. Equation (4.3) induces the mixing
angle θ̂23 as

tan 2θ̂23 ' δksin 2θ23

δkcos 2θ23 + 2εκ3
. (4.8)
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Around the maximal mixing at the mZ scale, θ23 =
π/4, the mixing angle at the MR scale, θ̂23 becomes

tan 2θ̂23 ' 1
2ε

δk

κ3
, (4.9)

This means that the mixing angle θ̂23 strongly de-
pends on the quantum correction ε. When the value
of δk/κ3 is larger than ε, the mixing angle does not re-
ceive any significant change from renormalization cor-
rections. On the other hand, when ε > δk/κ3, the mix-
ing angle strongly depends on RGE effects, and the
mixing angle at the MR scale can be small even if the
maximal mixing is realized at the mZ scale. This situ-
ation has been already discussed in [22].

3. Type B2(2):
If the absolute value of κ2,3 is of the same order, but
that they have the opposite signs from each other
(i.e., κ2κ3 < 0, |δk| ' 2|κ2,3|), κ(mZ) is given by

κ(mZ) = κ3

(
−cos 2θ23 sin 2θ23

sin 2θ23 cos 2θ23

)

+δk

(
cos 2θ23 −sin θ23cos θ23

−sin θ23cos θ23 sin 2θ23

)

' κ3cos 2θ23


 −1 tan 2θ23

tan 2θ23 1


 . (4.10)

In this case, (4.3) induces

tan 2θ̂23 = tan 2θ23

(
2 (1 − ε)

2 − ε (2 − ε)

)
= tan 2θ23 + O(ε2) . (4.11)

This means that the mixing angle is stable against a
small change of ε.

Table 1 shows the stability of the MNS matrix against
quantum corrections in the two-generation case. The mix-
ing angles of Type A(2) and Type B2(2) are stable against
a small change of ε, implying that they are stable against
quantum corrections. The mixing angle of Type B1(2) is
unstable around θ23 = π/4 when ε > (κ3 − κ2)/κ3. When
ε is bigger than the ratio (κ3 − κ2)/κ3, the mixing angle
at high energies is very different from that are observed at
low energies. Table 1 shows that the neutrino mass hierar-
chy and the relative sign assignment of the mass eigenval-
ues play crucial roles for the stability of the MNS matrix
against quantum corrections.

5 Three generation neutrinos

Now let us discuss the stability of the MNS matrix against
quantum corrections in three-generation case, according to
the classification of the mass hierarchies in (1.4).

5.1 Type A (m1 ∼ m2 � m3)

In the Type A scenario, the mass spectrum is given by

m1 = 0 , m2 =
√

∆m2
solar ,

m3 =
√

∆m2
solar + ∆m2

ATM . (5.1)

Neutrino masses of this type have large hierarchies. In this
type, there are the following relative sign assignments for
mass eigenvalues:

case (a1): ma1
ν = diag.(0, m2, m3) , (5.2a)

case (a2): ma2
ν = diag.(0,−m2, m3) . (5.2b)

The neutrino mass matrices at the weak scale for (a1) and
(a2) are given in Table 2, where we write the leading order
of each element, and the small parameter, ξa, is defined
as

ξa =
m2

m3
'
√

∆m2
solar

∆m2
ATM

. (5.3)

The relation between the neutrino mass matrices at
mZ and MR is given by

Mν(MR) =


1 − εe 0 0

0 1 − εµ 0
0 0 1


Mν(mZ)

×


1 − εe 0 0

0 1 − εµ 0
0 0 1


 . (5.4)

The mixing angles of the MNS matrix at MR can be ob-
tained from (5.4). We denote the mixing angles at the
MR scale as θ̂ij . Table 3 gives the tanβ dependences of
the mixing angles θ̂ij in the region 2 ≤ tanβ ≤ 60. Here
the initial conditions of the mixing angles θij at the mZ
scale are given by (2.16) and (2.17) as the inputs. Table 3
shows that mixing angles are stable against quantum cor-
rections in this scenario. For Ue3 ' 0, the MNS matrix
can be regarded as being two sets of two-generation mix-
ings, one between the first and the second generations and
the other between the second and the third generations.
Since large mass hierarchies exist in the first and second
generations and also in the second and third generations
as m1 � m2 and m2 � m3, sin2 2θ̂12 and sin2 2θ̂23 are
also stable against quantum corrections on the analogy
of Type A(2). Our numerical analyses show that all mix-
ing angles are insensitive to quantum corrections even at
tanβ ' 60. The MNS matrix is stable against quantum
corrections in (a1) and (a2).

5.2 Type B (m1 ∼ m2 � m3)

At first we consider the case that m1 is smaller than m2.
Then, the mass spectrum of this type is given by

m1 =
√

∆m2
ATM , m2 =

√
∆m2

ATM + ∆m2
solar ,

m3 =
√

∆m2
solar , (5.5)
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Table 1. Stabilities of the two-generation case

hierarchy κ(mZ) tan 2θ̂23(mixing angle at the MR) Stability

Type A(2)

(κ3 � κ2)
κ3cos 2θ23


 tan2 θ23 tan θ23

tan θ23 1


 tan 2θ23 (1 − ε sec 2θ23) + O(ε2) stable

Type B1(2)

(κ3 ' κ2)

(
κ3 − δksin 2θ23

)
×




1 − δk

κ3
cos 2θ23

δk

2κ3
sin 2θ23

δk

2κ3
sin 2θ23 1


 ' δksin 2θ23

δkcos 2θ23 + 2εκ3

unstable

(ε >
δk

κ3
)

Type B2(2)

(κ3 ' −κ2)
κ3cos 2θ23


 −1 tan 2θ23

tan 2θ23 1


 tan 2θ23 + O(ε2) stable

Table 2. Neutrino mass matrices at the weak scale for (a1) and (a2)

neutrino mass matrix in the leading order Stability

case(a1)
diag.(0, m2, m3)

m3

2


 2ξa sin2 θ ξa sin 2θ/

√
2 −ξa sin 2θ/

√
2

ξa sin 2θ/
√

2 1 1
−ξa sin 2θ/

√
2 1 1


 stable

case(a2)
diag.(0, −m2, m3)

m3

2


 −2ξa sin2 θ −ξa sin 2θ/

√
2 ξa sin 2θ/

√
2

−ξa sin 2θ/
√

2 1 1
ξa sin 2θ/

√
2 1 1


 stable

Table 3. tan β dependences of the mixing angles at MR in (a1) and (a2)
(2 ≤ tan β ≤ 60). The magnitudes of each mixing angles at the mZ are (2.16)
and (2.17)

MSW-S MSW-L VO
sin2 2θ̂12 0.007 ∼ 0.006 1 ∼ 0.996 1 ∼ 0.996

(a1) sin2 2θ̂23 1 ∼ 0.98 1 ∼ 0.98 1 ∼ 0.98
sin2 2θ̂13 0.0 ∼ 2.7 × 10−7 0.0 ∼ 8.8 × 10−5 0.0 ∼ 3.7 × 10−10

sin2 2θ̂12 0.007 ∼ 0.006 1 ∼ 0.996 1 ∼ 0.996
(a2) sin2 2θ̂23 1 ∼ 0.98 1 ∼ 0.98 1 ∼ 0.98

sin2 2θ̂13 0.0 ∼ 2.2 × 10−7 0.0 ∼ 6.8 × 10−5 0.0 ∼ 3.7 × 10−10
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Table 4. Neutrino mass matrices at mZ for (b1) and (b2)

neutrino mass matrix in the leading order Stability

case(b1)
diag.(m1, m2, 0)

m1

2


 2 ξb sin 2θ/

√
2 −ξb sin 2θ/

√
2

ξb sin 2θ/
√

2 1 −1
−ξb sin 2θ/

√
2 −1 1


 unstable

(θ12)

case(b2)
diag.(m1, −m2, 0)

−m1 cos 2θ

2


 −2

√
2 tan 2θ −√

2 tan 2θ√
2 tan 2θ 1 −1

−√
2 tan 2θ −1 1


 stable

Table 5. tan β dependences of the mixing angles at MR in the
case (b1) and (b2) (2 ≤ tan β ≤ 60)

MSW-S MSW-L VO
sin2 2θ̂12 see Figure 2

(b1) sin2 2θ̂23 1 ∼ 0.98 1 ∼ 0.98 1 ∼ 0.98
sin2 2θ̂13 0.0 0.0 0.0
sin2 2θ̂12 0.007 1 1

(b2) sin2 2θ̂23 1 ∼ 0.98 1 ∼ 0.98 1 ∼ 0.98
sin2 2θ̂13 0.0 0.0 0.0

There are the following two relative sign assignments for
the mass eigenvalues.

case (b1): mb1
ν = diag.(m1, m2, 0) , (5.6a)

case (b2): mb2
ν = diag.(m1,−m2, 0) . (5.6b)

The neutrino mass matrices in the leading order at mZ
for (b1) and (b2) are listed in Table 4, where the small
parameter ξb is defined as

ξb =
m2 − m1

m1
=

1
2

∆m2
solar

∆m2
ATM

. (5.7)

We analyze the stability of the MNS matrix for (b1)
and (b2) against quantum corrections by using Mν(MR)
obtained from (5.4). The results of our numerical analyses
are listed in Table 5. Let us examine the details of the case
(b1) first, and then (b2).

case(b1): Eigenvalues of Mν(MR), m2 > m1 � m3, are
given by

m1 = m1 (1 + ξb) , m2 = m1 (1 − 3ε) ,

m3 = 0 , (|ξb| > 3|ε|) ,

m1 = m1 (1 − 3ε) , m2 = m1 (1 + ξb) ,

m3 = 0 , (|ξb| < 3|ε|) , (5.8)

up to the order of ε and ξb for any value of θ.
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Fig. 2. tan β dependences of sin2 2θ̂12 at MR = 1013GeV ac-
cording to the solar neutrino solutions in (b1)

Numerical analyses of Table 5 suggest that sin2 2θ̂13

and sin2 2θ̂23 are stable against quantum corrections. This
is because there are large hierarchies of m1 � m3 and
m2 � m3 on the analogy of Type A(2). How about
sin2 2θ̂12? Figure 2 shows that tanβ dependence of the
sin2 2θ̂12 corresponding to the MSW-L solution and the
VO solution. As in the previous section, we use mixing
angles at the mZ scale in (2.16) and (2.17) as inputs pa-
rameters. For the MSW-S solution, the mixing angle θ̂12
is stable against quantum corrections.

In the MSW-L solution, the magnitude of sin2 2θ̂12 at
the MR scale is damped strongly from its initial values,
sin2 2θ12 ∼ 1 at mZ scale, if tanβ ≥ 20. On the other
hand, sin2 2θ̂12 ' 0 at MR is obtained even in the small
tanβ region in case of the VO solution. The above two
cases can be easily understood as follows. From (5.4),
tan 2θ̂12 is estimated to be

tan 2θ̂12 ' tan 2θ12

(
1 +

1
cos 2θ12

ε

|ξb|
)−1

, (5.9)
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where we define ε ≡ εe ' εµ. When θ12 is π/4, (5.9) be-
comes

tan 2θ̂12 ' ξb

2ε
∼




10−3

ε
(MSW-L) ,

10−9

ε
(VO) ,

(5.10)

from (5.7). Dotted-lines of (c) in Figures 1 shows that ε is
much larger than 10−3 in the region of tanβ > 20. Then,
from (5.10), sin2 2θ̂12 is sufficiently small when tan β is
larger than 20 in the MSW-L solution. On the other hand,
(5.10) suggests sin2 2θ̂12 ' 0 even in the small tanβ region
in the VO solution.

Finally, let us see how the stability of the MNS matrix
is changed if we take the mass spectrum as

m1 =
√

∆m2
ATM + ∆m2

solar ,

m2 =
√

∆m2
ATM , m3 = 0 . (5.11)

instead of (5.5). The behaviors of the mixing angles against
quantum corrections for the MSW-L and the VO solutions
are the same as those of (5.5).

For the MSW-S solution is not realistic one. It is be-
cause the dominant component of the heaviest state ν1,
(5.11) becomes νe in the MSW-S solution. Therefore the
neutrino oscillation through matter effects is not realized
in this mass spectrum. However, we discuss this mass spec-
trum with small mixing angle θ12, which we call inverse
hierarchy case, because interesting result is obtained. In
this mass spectrum, (5.9) becomes

tan 2θ̂12 ' tan 2θ12

(
1 − 1

cos 2θ12

ε

|ξb|
)−1

, (5.12)

and (5.7) is replaced by

ξb =
m2 − m1

m1
= −1

2
∆m2

solar

∆m2
ATM

. (5.13)

In the MSW-S solution, sin2 2θ̂12 has a peak around tanβ
∼ 10. This peak depends on the MR scale because the
peak appears from cancellation among κ’s elements. When
θ12 � 1, (5.12) becomes

tan 2θ̂12 ' 2θ12

(
1 − ε

|ξb|
)−1

. (5.14)

This means that tan 2θ̂12 diverges (sin2 2θ̂12 ∼ 1) at ε '
|ξb|. Equation (5.13) suggests that |ξb| is about 10−3. Fig-
ures 1 shows ε ' 10−3 around tanβ ∼ 10 for MR =
1013GeV. Thus, sin2 2θ̂12 becomes one at around tanβ ∼
10 almost independently of the value of θ12. This is the
reason why the peak in Fig. 2 appears in the inverse hier-
archy case.

case(b2): Eigenvalues of Mν(MR) are given by

m1 = m1

(√
1 + ξb − 3ε +

1
2

(ξb + ε cos 2θ)
)

,

m2 = −m1

(√
1 + ξb − 3ε − 1

2
(ξb + ε cos 2θ)

)
,

m3 = 0 , (5.15)

up to the order of ε and ξb. Numerical analyses of Ta-
ble 5 show that the MNS matrix is stable against quan-
tum corrections. This can be easily understood as follows:
sin2 2θ̂13 and sin2 2θ̂23 are stable against quantum cor-
rections, because there are large hierarchies between the
first and third generations and also between the second
and third generations on the analogy of Type A(2); also
sin2 2θ̂12 is stable against quantum corrections since the
signs of m1 and m2 are different from each other on the
analogy of Type B2(2). Thus, we can conclude that all the
MNS matrix elements are stable against quantum correc-
tions in case (b2).

The results of (b1) and (b2) are consistent with the
results in [10].

5.3 Type C (m1 ∼ m2 ∼ m3)

The mass spectrum is given by

m1 = m0 , m2 =
√

m2
0 + ∆m2

solar ,

m3 =
√

m2
0 + ∆m2

solar + ∆m2
ATM , (5.16)

where m0 is the degenerate mass scale. We take m0 =
1.0 eV or 0.2 eV in this article. There are the following
four different relative sign assignments of neutrino mass
eigenvalues:

case (c1): mc1
ν = diag.(−m1, m2, m3) , (5.17a)

case (c2): mc2
ν = diag.(m1,−m2, m3) , (5.17b)

case (c3): mc3
ν = diag.(−m1,−m2, m3) , (5.17c)

case (c4): mc4
ν = diag.(m1, m2, m3) . (5.17d)

We define the small parameters

δc ≡ m3 − m2

m0
' 1

2
∆m2

ATM

m2
0

ξc ≡ m2 − m1

m0
' 1

2
∆m2

solar

m2
0

, (5.18)

where ξc is always smaller than δc. The neutrino mass
matrices for all types are listed in Table 6 up to the leading
order for each element.

In the case of m0 = 1.0 eV, all three solar neutrino
solutions of cases (c3) and (c4) and the MSW-S solu-
tion of the cases (c1) and (c2) have been excluded by the
neutrino-less double-β decay experiments [23], whose up-
per limit is given by 〈mνe

〉 < 0.2 eV [24], where

〈mνe〉 =

∣∣∣∣∣
3∑

i=1

mi (VMNS)2ei

∣∣∣∣∣
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Table 6. Neutrino mass matrices at mZ for (c1) ∼ (c4)

neutrino mass matrix up to the leading order Stability

case(c1)
diag.(−m1, m2, m3)

m0

2


 −2 cos 2θ

√
2 sin 2θ −√

2 sin 2θ√
2 sin 2θ 1 + cos 2θ 1 − cos 2θ

−√
2 sin 2θ 1 − cos 2θ 1 + cos 2θ


 rearrangement

between
V2 and V3

case(c2)
diag.(m1, −m2, m3)

m0

2


 2 cos 2θ −√

2 sin 2θ
√

2 sin 2θ

−√
2 sin 2θ 1 − cos 2θ 1 + cos 2θ√

2 sin 2θ 1 + cos 2θ 1 − cos 2θ


 rearrangement

between
V1 and V3

case(c3)
diag.(−m1, −m2, m3)

m0


 −1 −√

2ξc sin 2θ
√

2ξc sin 2θ

−√
2ξc sin 2θ δc/2 1√

2ξc sin 2θ 1 δc/2


 rearrangement

between
V1 and V2

case(c4)
diag.(m1, m2, m3)

m0


 1

√
2ξc sin 2θ −√

2ξc sin 2θ√
2ξc sin 2θ 1 δc/2

−√
2ξc sin 2θ δc/2 1


 unstable

go to the
unit matrix

=




m0
(
cos 2θ − ξc sin2 θ

)
,

(for case (c1) and (c2)) ,

m0
(
1 + ξc sin2 θ

)
,

(for case (c3) and (c4)) ,

(5.19)

from (2.16) and (5.18). Thus, we analyze the stability of
the MNS matrix for (c1) and (c2) with m0 = 1.0 eV, and
for all cases with m0 = 0.2 eV.

5.3.1 m0 = 1.0 eV

Figures 3 show the tanβ dependence of sin2 2θ̂ij in (c1)
and (c2) for m0 = 1.0 eV. They show that all sin2 2θ̂ij ’s
gradually approach fixed values as tanβ becomes large.
We can estimate the value of tanβ where the mixing an-
gles become close to the fixed values.

The dotted-line of (b) in Figure 1 show the value of

δc =
∆m2

ATM

2m2
0

= 1.9 × 10−3 , (m0 = 1.0 eV) . (5.20)

We can see that δc � ε for tanβ ≥ 20 in Fig. 1. As
tanβ increases, the quantum effects become larger than
the effects of the mass-squared differences of neutrinos. All
sin2 2θ̂ijs approach their fixed values at around tanβ ∼ 20
as shown in Figures 3.

By taking the limit of δc � ε we can obtain the fixed
values of sin2 2θ̂ij according to the solar neutrino solutions
in (c1) and (c2) as follows:

case (c1): The eigenvectors V1,2,3 at the mZ scale are given
by

V1 =




cos θ
−1√

2
sin θ

1√
2

sin θ


 , V2 =




sin θ
1√
2

cos θ

−1√
2

cos θ


 ,

V3 =




0
1√
2

1√
2


 . (5.21)

Vi is the eigenvector of the i-th eigenvalue of the neutrino
mass matrix, which corresponds to each column of the
MNS matrix in (2.16). At the MR scale, eigenvalues of
(5.4) are given by

m1(MR) = −m0(1 − ε(1 + cos2 θ)) ,

m2(MR) = m0(1 − 2ε) ,

m3(MR) = m0(1 − ε sin2 θ) , (5.22)

up to the order ε under the condition δc � ε. Their eigen-
vectors are
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Fig. 3a–f. tan β dependences of
sin2 2θ̂ij at MR = 1013GeV in (c1)
and (c2) for m0 = 1.0 eV

V ′
1 =




cos θ

− sin θ√
2

sin θ√
2




, V ′
2 =




sin θ√
1 + cos2 θ

√
2 cos θ√

1 + cos2 θ

0




,

V ′
3 =




−1
2

sin 2θ√
1 + cos2 θ

1√
2

sin2 θ√
1 + cos2 θ

1√
2

√
1 + cos2 θ




. (5.23)

By comparing (5.21) with (5.23), the relation between Vi
and V ′

i is given by




V ′
1

V ′
2

V ′
3


 =




1 0 0

0
1√

1 + cos2 θ

cos θ√
1 + cos2 θ

0
− cos θ√
1 + cos2 θ

1√
1 + cos2 θ




×




V1

V2

V3


 . (5.24)

When we take θ = π/4 (θ = 0) in (5.24), we can obtain
the relation between Vi and V ′

i for the MSW-L and the
VO solutions (the MSW-S solution).
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For the MSW-L and the VO solutions, the MNS matrix
at the MR scale is given by

ÛMNS =


 1/

√
2 1/

√
3 −1/

√
6

−1/2 2/
√

3 1/2
√

3
1/2 0

√
3/2


 (5.25)

in the limit of δc � ε. The relation between Vi and V ′
i is

given by

V ′
1 = V1 , V ′

2 =

√
2
3

V2 +

√
1
3

V3 ,

V ′
3 = −

√
1
3

V2 +

√
2
3

V3 . (5.26)

This is consistent with the results in [9].
For the MSW-S solution4, the MNS matrix at the MR

is given by

ÛMNS =


 1 0 0

0 1 0
0 0 1


 , (5.27)

which means

V ′
1 = V1 , V ′

2 =
1√
2

V2 +
1√
2

V3 ,

V ′
3 = − 1√

2
V2 +

1√
2

V3 . (5.28)

case (c2): By the same calculations as those of (c1), the
eigenvalues of (5.4) are obtained as

m1(MR) = m0(1 − 2ε) ,

m2(MR) = −m0(1 − ε(1 + sin2 θ)) ,

m3(MR) = m0(1 − ε cos2 θ) , (5.29)

up to O(ε) in δc � ε. Their eigenvectors are given by

V ′
1 =




cos θ√
1 + sin2 θ

−
√

2 sin θ√
1 + sin2 θ

0




, V ′
2 =




sin θ

cos θ√
2

−cos θ√
2




,

V ′
3 =




1
2

sin 2θ√
1 + sin2 θ

1√
2

cos2 θ√
1 + sin2 θ

1√
2

√
1 + sin2 θ




. (5.30)

4 Although the MSW-S solution in (c1) and (c2) with m0 =
1.0 eV is already excluded by the neutrino-less double-β decay
experiments of (5.19), we discuss it here to check if our analytic
calculations are consistent with our numerical results.

By comparing (5.21) with (5.30), the relation between Vi

and V ′
i is given by




V ′
1

V ′
2

V ′
3


 =




1√
1 + sin2 θ

0
− sin θ√
1 + sin2 θ

0 1 0

sin θ√
1 + sin2 θ

0
1√

1 + sin2 θ




×




V1

V2

V3


 . (5.31)

For the MSW-L and the VO solutions, the MNS matrix
at the MR scale is given by

ÛMNS =


 1/

√
3 1/

√
2 1/

√
6

−√2/3 1/2 1/2
√

3
0 −1/2

√
3/2


 (5.32)

in δc � ε. This means

V ′
2 = V2 , V ′

1 =

√
2
3

V1 −
√

1
3

V3 ,

V ′
3 =

√
1
3

V1 +

√
2
3

V3 . (5.33)

This is consistent with the results in [8].
For the MSW-S solution4, the MNS matrix at the MR

scale is obtained as

ÛMNS =


1 0 0

0 1/
√

2 1/
√

2
0 −1

√
2 1/

√
2


 , (5.34)

which suggests

V ′
1 = V1 , V ′

2 = V2 , V ′
3 = V3 . (5.35)

For the MSW-L and the VO solutions in (c1) and (c2),
(5.25) and (5.32) suggest the fixed values of the sin2 2θ̂ijs
are

sin2 2θ̂12 = 0.96 , sin2 2θ̂23 = 0.36 , sin2 2θ̂13 =
5
9

,

(5.36)
in the limit of ε � δc. We cannot see the differences be-
tween the MSW-L and the VO solutions in Figures 3. It
is because the value of tanβ where all sin2 2θ̂ijs approach
their fixed values are determined by ε and δc which is
solely determined by ∆m2

ATM. The rearrangements oc-
cur between V2 and V3 in (c1), and V1 and V3 in (c2),
where the squared mass differences of their eigen-values
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are mainly determined by ∆m2
ATM. On the other hand,

for the MSW-S solution (5.27) and (5.34) suggest that all
of the mixing angles approach zero in the case of (c1),
and sin2 2θ̂12 = sin2 2θ̂13 = 0, sin2 2θ̂23 = 1 in the case
of (c2). These results from analytic calculations are com-
pletely consistent with those from numerical analyses, as
shown in Fig. 3.

5.3.2 m0 = 0.2 eV

Figures 4, 5, 6 and 7 show the tanβ dependences of
sin2 2θ̂ijs with m0 = 0.2 eV in (c1), (c2), (c3) and (c4),
respectively.

cases (c1) and (c2): Figures 4 and 5 show that all
sin2 2θ̂ijs approach the same fixed values as those with
m0 = 1.0 eV in the large tanβ region. However, the value
of tanβ where sin2 2θ̂ijs becomes close to their fixed val-
ues with m0 = 0.2 eV is larger than that with m0 = 1.0
eV. The value of δc with m0 = 0.2 eV is given by

δc =
∆m2

ATM

2m2
0

= 4.6 × 10−2 , (m0 = 0.2 eV) , (5.37)

which is shown by the dotted-line (a) in Fig. 1. In the re-
gion of 2 ≤ tanβ < 50, ε is not larger than δc, and the first
two generation neutrinos will not become degenerate with
the third-generation neutrino. Thus, a rearrangement be-
tween the eigenvectors of V1(V2) and V3 is not completely
realized, although the sign of m1(m2) is the same as that
of m3.

case (c3): Figures 6 show that for all solar neutrino solu-
tions sin2 2θ̂12 and sin2 2θ̂13 are almost zero in the region
of tanβ ≥ 10, and sin2 2θ̂23 ' 1 in all tanβ region. Up to
the O(ε) eigenvalues of (5.4) are given by

m1(MR) = −m0(1 − 2ε) ,

m2(MR) = −m0(1 − ε) ,

m3(MR) = m0(1 − ε) , (5.38)

and their eigenvectors are given by

V ′
1 =


1

0
0


 , V ′

2 =


 0

1/
√

2
−1/

√
2


 , V ′

3 =


 0

1/
√

2
1/

√
2


 .

(5.39)
These eigenvectors and eigenvalues do not depend on the
mixing angle, θ. Equations (5.39) suggest

sin2 2θ̂12 = 0 , sin2 2θ̂23 = 1 , sin2 2θ̂13 = 0 ,
(5.40)

from (2.7) in the region of ξc � ε. By comparing (5.21)
with (5.39), we can obtain

V ′
1

V ′
2

V ′
3


 =


 cos θ sin θ 0

− sin θ cos θ 0
0 0 1




V1

V2

V3


 . (5.41)

The rearrangement between V1 and V2 is realized, because
the sign of m1 is the same as that of m2.

Figures 6 show sin2 2θ13 and sin2 2θ23 are not changed
against quantum corrections, and sin2 2θ̂12 is close to zero
in tanβ ≥ 10 for the MSW-L solution, while sin2 2θ̂12 ' 0
in all tanβ region for the VO solution. These situations
can be explained by estimating the value of tanβ where
the mixing angles are close to the fixed values. For the
MSW-L solution, the value of ξc is given by

ξc =
∆m2

MSW−L

2m2
0

= 2.3 × 10−4 , (5.42)

which is shown as dotted-lines of (d) in Fig. 1. Since ξc is
much smaller than ε in the region 10 ≤ tanβ, the first and
the second generations are regarded as being degenerate
at m0, and a rearrangement between V1 and V2 is realized.
On the other hand, the VO solution gives the value of ξc

as

ξc =
∆m2

VO

2m2
0

= 1.1 × 10−9 , (5.43)

which is much smaller than ε in all tanβ regions. Therefor,
a rearrangement between V1 and V2 is realized even in the
small tanβ region for the VO solution.

case (c4): Figures 7 show that all sin2 2θ̂ijs approach zero
in the large tanβ region. This means that the MNS ma-
trix becomes the unit matrix in the limit of ε � δc. In the
case of (c4) we cannot obtain the rearrangement rule be-
tween Vi and V ′

i , because κ becomes proportional to the
unit matrix, which can be diagonalized by any unitary
matrices.

Let us first see the MSW-L solution. Figure 1 shows
ξc � δc ∼ ε in the region 10 < tanβ < 50, where the
value of ξc (δc) is shown in (5.42) ((5.37)). In this region
(5.4) becomes

Mν(MR) ' m0


1 − 2ε 0 0

0 (1 − 2ε) (1 − ε) δc/2
0 (1 − ε) δc/2 1


 .

(5.44)
This means that sin2 2θ̂12 approaches to zero if 10 < tanβ.
Equation (5.44) also suggests the mixing between the sec-
ond and the third generations becomes

tan 2θ̂23 ' δc

2ε
. (5.45)

If tanβ > 50, ε is larger than δc, and sin2 2θ̂23 becomes
small as we can see in Figures 7.

For the VO solution, since the value of ξc in (5.43)
is much smaller than values of ε and δc, Mν(MR) also
becomes (5.44) in all tanβ region. Therefor, sin2 2θ̂12 and
sin2 2θ̂13 are zero at any value of tanβ. The behavior of
sin2 2θ̂23 in the VO solution is the same as that in the
MSW-L solution, since (5.44) is independent of ξc.

Since the mixing angle θ ' 0 for the MSW-S solu-
tion, Mν(MR) also becomes (5.44). Thus, sin2 2θ̂12 and
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Fig. 4. tan β dependences of sin2 2θ̂ij in (c1) with m0 = 0.2 eV
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Fig. 5. tan β dependences of sin2 2θ̂ij in (c2) with m0 = 0.2 eV



N. Haba, N. Okamura: Stability of the lepton-flavor mixing matrix against quantum corrections 361

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

si
n2 2

θ̂ 1
2

tanβ

MSW-L

Vacuum

MSW-S

 case (c3)
mixing angle of 1-2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

si
n2 2

θ̂ 2
3

tanβ

MSW-L Vacuum MSW-S

 case (c3)
mixing angle of 2-3

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

si
n2 2

θ̂ 1
3

tanβ

MSW-L Vacuum MSW-S

 case (c3)
mixing angle of 1-3

Fig. 6. tan β dependences of sin2 2θ̂ij in (c3) with m0 = 0.2 eV
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sin2 2θ̂13 are zero in all tanβ region, and tanβ depen-
dence of sin2 2θ̂23 is the same as that in the MSW-L (VO)
solution.

If we take the limit of m0 → 0, cases of type C become
cases of Type A, where δc and ξc diverge infinities and
are always larger than ε. It also suggests that all cases of
Type A are stable against quantum corrections.

6 Conclusion

In this article, we study the stability of the Maki-
Nakagawa-Sakata (MNS) lepton-flavor mixing matrix
against quantum corrections in the minimal supersymmet-
ric Standard Model (MSSM) with effective dimension-five
operators which give the Majorana masses of neutrinos.
We constrain the parameters of the MNS matrix at the
weak scale based on experimental data, and obtain the
MNS matrix at the high-energy scale (the right-handed
neutrino decoupling scale MR) by calculating the quantum
corrections. Then, we analyze the stability of the MNS ma-
trix between low and high energy scale according to the
types of neutrino mass hierarchy.

In the two-generation neutrino case, the mixing angles
for large mass hierarchy (κ3 � κ2), which we call Type
A(2) and for degenerate neutrino masses with opposite sign
of the eigenvalues (κ3 ' −κ2), which we call Type B2(2)

are stable against quantum corrections. Here κ2 and κ3 are
eigenvalues of the 2× 2 neutrino mass matrix at the weak
scale, where |κi| = mi. The mixing angle for degenerate
neutrino masses with same sign of the eigenvalues (κ3 '
κ2), which we call Type B1(2) is unstable around θ23 =
π/4 when the magnitude of the quantum correction, ε, is
larger than | (κ3 − κ2) /κ3|.

In the three-generation neutrinos, the stability of the
MNS matrix strongly depends on the types of mass hierar-
chy and the relative sign assignments of mass eigenvalues.
The results are summarized as follows:

1. Type A (m1 ∼ m2 � m3)
The MNS matrix is stable against quantum correc-
tions.

2. Type B (m1 ∼ m2 � m3)
sin2 2θ13 and sin2 2θ23 are stable against quantum cor-
rections because there are large hierarchies between
the first and the third generations and also between
the second and the third generations on the analogy of
Type A(2),
case (b1): (κ1, κ2, κ3) = (m1, m2, 0)
sin2 2θ12 is unstable against quantum corrections,
when we assume that the solar neutrino deficit ex-
plain the MSW-L solution or the VO solution. This
is understood on the analogy of Type B1(2). Thus, the
MNS matrix is unstable against quantum corrections
for both solutions. On the other hand, the MNS matrix
is stable against quantum corrections for the MSW-S
solution.

case (b2): (κ1, κ2, κ3) = (m1,−m2, 0)
sin2 2θ̂12 is also stable against quantum corrections
analogous to the case of Type B2(2). The MNS ma-
trix is stable against quantum corrections.
The results of the case (b1) and (b2) are consistent
with those of [10].

3. Type C (m1 ∼ m2 ∼ m3)
The MNS matrix approaches the definite unitary ma-
trix according to the relative sign assignments of the
neutrino mass eigenvalues, as the effects of quantum
corrections become large enough to neglect the
squared-mass differences of neutrinos. Independent pa-
rameters of the MNS matrix at the MR scale approach
the following fixed values in the large limit of quantum
corrections:
case (c1): diag.(−m1, m2, m3)

Ue2 =
sin θ√

1 + cos2 θ
, Ue3 = −1

2
sin 2θ√

1 + cos2 θ
,

Uµ3 =
1√
2

sin2 θ√
1 + cos2 θ

. (6.1)

case (c2): diag.(m1,−m2, m3)

Ue2 = sin θ , Ue3 =
1
2

sin 2θ√
1 + sin2 θ

,

Uµ3 =
1√
2

cos2 θ√
1 + sin2 θ

. (6.2)

case (c3): diag.(−m1,−m2, m3)

Ue2 = 0 , Ue3 = 0 , Uµ3 =
1√
2

. (6.3)

case (c4): diag.(m1, m2, m3)

Ue2 = 0 , Ue3 = 0 , Uµ3 = 0 . (6.4)

In the case (c1), our result is consistent with that of
[9]. In the case (c2), the relation between eigenvectors at
the mZ scale and that at the MR scale is the same as that
of [8] in the large tanβ region.

The results of this article are not only useful for model
building, but also show the possibility to obtain large mix-
ing angles from quantum corrections.
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A Quantum corrections of κ when κ33 = 0

In this section, we show the relation between κ(mZ) and κ(MR)
in the cases of κ33 = 0.

A.1 κ33 = 0, κ22 and κ11 6= 0

At first, we discuss the case of κ33 = 0 in the diagonal base of
ye. If some elements of κ are zero at mZ , they are always zero
at all energies. This means if κ33 is zero at mZ , κ cannot be
normalized by κ33 and cij of (3.3) cannot be defined. Thus, if
κ22 6= 0, we adopt κ22 for the normalization of κ as

κ = κ22


 r′

1 c′
12

√
r′
1 c′

13r
′
2

√
r′
1

c′
12

√
r′
1 1 r′

2

c′
13r

′
2

√
r′
1 r′

2 0


 ,

= κ22



√

r′
1 0 0

0 1 0
0 0 r′

2




 1 c′

12 c′
13

c′
12 1 1

c′
13 1 0




×



√

r′
1 0 0

0 1 0
0 0 r′

2


 , (A.1)

where c′
1js (j = 2, 3) are defined as

(
c′
12

)2
=

κ2
12

κ11κ22
, and

(
c′
13

)2
=

κ22κ
2
13

κ11κ2
23

, (A.2)

which are energy-scale independent complex parameters. r′
1,2

in (A.1) are defined as

r′
1 =

κ11

κ22
,

r′
2 =

κ23

κ22
. (A.3)

By using the notation of (3.8), we can obtain the energy-scale
dependences of r′

1,2 as

r′
1(MR) = r′

1(mZ)
Ie

Iµ
,

r′
2(MR) = r′

2(mZ)

√
Iτ

Iµ
. (A.4)

Then, κ(MR) is given by

κ(MR) =
k22(MR)
k22(mZ)

Iτ

Iµ



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1


κ(mZ)

×



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1


 . (A.5)

A.2 κ11 = κ22 = κ33 = 0

When all diagonal elements are zero, all off-diagonal elements
of κ can be taken to be real. This is because all phases are
absorbed by the field redefinitions of

Li → e−iϕiLi , and Ei → eiϕiEi , (A.6)

where ϕis are defined as

ϕ1 = (arg.(κ12) + arg.(κ13) − arg.(κ23)) /4 ,

ϕ2 = (arg.(κ12) − arg.(κ13) + arg.(κ23)) /4 ,

ϕ3 = (−arg.(κ12) + arg.(κ13) + arg.(κ23)) /4 . (A.7)

Normalizing all elements by κ23, κ is given by

κ = κ23


 0 r′′

1 r′′
2

r′′
1 0 1

r′′
2 1 0


 ,

= κ23



√

r′′
1 r′′

2 0 0
0

√
r′′
1 /r′′

2 0
0 0

√
r′′
2 /r′′

1




 0 1 1

1 0 1
1 1 0




×



√

r′′
1 r′′

2 0 0
0

√
r′′
1 /r′′

2 0
0 0

√
r′′
2 /r′′

1


 , (A.8)

where
r′′
1 =

κ12

κ23
, and r′′

2 =
κ13

κ23
. (A.9)

By using the notation of (3.8), we can obtain r′′
1,2(MR) as

r′′
1 (MR) = r′′

1 (mZ)

√
Ie

Iτ
,

r′′
2 (MR) = r′′

2 (mZ)

√
Ie

Iµ
. (A.10)

Then, κ(MR) is given by

κ(MR) =
κ23(MR)
κ23(mZ)

√
Iτ

Iµ



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1


κ(mZ)

×



√

Ie/Iτ 0 0
0

√
Iµ/Iτ 0

0 0 1


 . (A.11)

Equations (A.5) and (A.11) show that the energy-scale de-
pendence of the MNS matrix can be estimated by√

Ie/Iτ and
√

Iµ/Iτ even in the cases of κ33 = 0 or κ11 =
κ22 = κ33 = 0. In general, quantum corrections of the MNS
matrix can be estimated by only ng −1 degrees of freedom [21].
This is easily understood as follows. The RGE of κ ((3.1)) is
separated into two parts, which are the lepton-flavor indepen-
dent terms and the lepton-flavor dependent terms The energy-
scale dependences of the mixing angles of κ are determined by
the flavor-dependent corrections from ye. Since ye has ng de-
grees of freedom, expect for the over-all factor, ng − 1 degrees
of freedom determine the energy-scale dependence of the MNS
matrix, as shown in (3.9), (A.5) and (A.11).

B Approximation of the renormalization
corrections

We show the approximation of
√

Ii/Iτ . Although we do not
use this approximation in our numerical analyses, it is useful
for a rough estimate of quantum corrections of κ.
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At first, let us estimate the values of√
Ie,µ/Iτ −

√
1/Iτ√

Ie,µ/Iτ

= 1 − 1√
Ie,µ

. (B.1)

The magnitudes of (B.1) are estimated to be

0 < 1 − 1√
Ie

� 10−8 and 0 < 1 − 1√
Iµ

� 10−3 (B.2)

in the region of 2 ≤ tan β ≤ 60 from the numerical analysis
shown in Figure 8. Thus, the approximation√

Ie,µ

Iτ
' 1√

Iτ

(B.3)

is valid with good accuracy. If we neglect the energy-scale de-
pendence of yτ , the value of (B.3) is given by

ln

(
1√
Iτ

)
=

1
8π2

(
mτ

v

)2 (
tan β2 + 1

)
ln

(
mZ

MR

)
(B.4)

from (3.8), where mτ is the mass of τ -lepton and v2 = 〈φ2
d〉 +

〈φ2
u〉. We define the faction of

Err(tan β, MR) = 1 − √
Iτ (B.5)
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Fig. 9. tan β dependence of (B.6)

×
(

mZ

MR

) 1
8π2

(
mτ

v

)2 (
tan β2 + 1

)

to check the accuracy of (B.4). The tan β dependence of |Err|
is shown in Figure 9 with MR = 1013 GeV. In the region
2 ≤ tan β ≤ 50, the error of (B.4) is less than 1%. Even in the
region 50 ≤ tan β ≤ 60, where the energy scale dependence of
yτ cannot be neglected, |Err| is less than 10%.

If MR is smaller than 1013 GeV, the approximation of (B.4)
becomes more accurate because the Yukawa couplings of the
charged-leptons are enhanced in the high energy scale.

Note added:

After we submitted this work for publication, we received a pa-
per hep-ph/9906470 [25] by R. Barbieri, G.G. Ross and
A. Strumia. They have shown that the MNS matrix is not
spoiled by quantum corrections in some types of neutrino mass
hierarchy. All their findings are understood as special cases of
our results.
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